Telegram Group & Telegram Channel
Можно ли использовать MSE или MAE для задач классификации

Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:

🔸 Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.

🔸 Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.

⚠️ Потенциальные проблемы:
При несбалансированных классах MSE/MAE могут вводить в заблуждение
Такие функции не дают вероятностной интерпретации, как логистическая регрессия
Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/954
Create:
Last Update:

Можно ли использовать MSE или MAE для задач классификации

Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:

🔸 Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.

🔸 Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.

⚠️ Потенциальные проблемы:
При несбалансированных классах MSE/MAE могут вводить в заблуждение
Такие функции не дают вероятностной интерпретации, как логистическая регрессия
Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/954

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека собеса по Data Science | вопросы с собеседований from it


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA